Vai al contenuto principale
Logo di Scuola Universitaria Interdipartimentale in Scienze Strategiche (SUISS)

SUISS - Struttura Didattica Speciale in Scienze strategiche

Scuola Universitaria Interdipartimentale in Scienze Strategiche (SUISS)

Logo di Scuola Universitaria Interdipartimentale in Scienze Strategiche (SUISS)
Oggetto:
Oggetto:

Discipline scientifiche di base A - Mod. I - Matematica

Oggetto:

Basic scientific disciplines A - Mod. I - Mathematics

Oggetto:

Anno accademico 2018/2019

Codice dell'attività didattica
CPS0488A
Docente
Prof. Bruno Giuseppe BARBERIS (Titolare del corso)
Insegnamento integrato
Corso di studi
[f055-c702] Laurea in Scienze Strategiche e della Sicurezza
[f055-c702PO] Laurea in Scienze Strategiche e della Sicurezza (Percorso Politico Organizzativo)
[f055-c702LOG] Laurea in Scienze Strategiche e della Sicurezza (Percorso Logistico)
[f055-c702EA] Laurea in Scienze Strategiche e della Sicurezza (Percorso Economico Amministrativo)
Anno
1° anno
Periodo didattico
Primo semestre
Tipologia
Di base
Crediti/Valenza
5
SSD dell'attività didattica
MAT/07 - fisica matematica
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Facoltativa
Tipologia d'esame
Scritto ed orale
Prerequisiti
Nessuno

English: None

Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Il corso si propone di fornire agli studenti i concetti e gli strumenti matematici fondamentali necessari per descrivere, schematizzare e interpretare i principali aspetti della realtà che ci circonda. Gli allievi dovranno essere in grado innanzitutto di acquisire un modo rigoroso e analitico di ragionare e di affrontare i problemi. In particolare dovranno saper costruire e interpretare grafici di funzioni reali di una variabile reale e applicare i concetti acquisiti a problemi semplici. Dovranno saper utilizzare il calcolo integrale per il calcolo di aree. Dovranno conoscere il calcolo vettoriale. Dovranno essere in grado di risolvere problemi matematici e applicati che richiedono l'integrazione di semplici equazioni differenziali ordinarie.  
The course proposes to give to students the fundamental mathematical concepts and instruments for describing, sketching and understanding the main aspects of the world around us. Students must be able to learn a rigorous and analytic method of reasoning and tackling problems. In particular they must be able to sketch and interpret graphs of real functions of one real variable and to apply the acquired concepts to simple problems. They must be able to use integral calculus for computing areas between curves. They must know vector calculus. They must be able to solve mathematical and applied problems which need the integration of simple ordinary differential equations.
Oggetto:

Risultati dell'apprendimento attesi

Conoscenza di concetti fondamentali di matematica.

Capacità di applicare tali conoscenze a semplici problemi applicativi. Capacità di interpretare dati tramite l'utilizzo dei concetti di matematica appresi.  
Knowledge of fundamental mathematical concepts. Capability to apply these concepts to simple concrete problems. Capability to explain data through the use of the learned mathematical concepts.
Oggetto:

Modalità di insegnamento

Lezioni frontali ed esercitazioni.

 
Lectures and exercises.
Oggetto:

Modalità di verifica dell'apprendimento

L'esame consiste in una prova scritta concernente gli argomenti di matematica trattati nel corso ed una eventuale prova orale facoltativa.

 
The exam is a written test regarding the mathematical arguments discussed during the course followed  an optional oral exam.
Oggetto:

Attività di supporto

Nessuno.

None.

Oggetto:

Programma


- Numeri e loro rappresentazione.
- Le funzioni reali di una variabile reale.
- Funzioni elementari.
- Limiti di funzioni.
- Derivate e loro applicazioni.
- Studi di funzioni reali di una variabile reale.
- Formule di Taylor e di Maclaurin di funzioni di una variabile.
- Integrali indefiniti di funzioni di una variabile. Regole di integrazione.
- Gli integrali definiti. Teorema fondamentale del calcolo integrale.
- Teorema della media. Calcolo di aree piane.
- Integrali impropri.
- Vettori nel piano e nello spazio. Matrici.
- I numeri complessi.
- Le equazioni differenziali ordinarie. Equazioni lineari del primo ordine. Equazioni lineari del secondo ordine a coefficienti costanti. Sistemi di equazioni lineari del primo ordine.


- Numbers and their representation.
- Functions of one real variable.
- Elementary functions.
- Limits of functions.
- Derivatives and their applications.
- Curve sketching.
- Taylor and Maclaurin formulas of functions of one variable.
- The indefinite integrals of functions of one variable. Integration techniques.
- The definite integrals. The fundamental theorem of calculus.
- The mean value theorem. Computing areas between curves.
- Improper integrals.
- Vectors in the Euclidean plane and space. Matrices.
- Complex numbers.
- Ordinary differential equations. Linear first order differential equations. Linear second order differential equations with constant coefficients. Systems of linear first order differential equations.

Testi consigliati e bibliografia

Oggetto:

Dispense del corso di Matematica in E-learning, consultabili sulla piattaforma start.unito.it.

 
Lecture notes of the E-learning Course in Mathematics available online at the link: start.unito.it.


Oggetto:

Orario lezioni

GiorniOreAula
Lunedì8:15 - 11:00T/10 Palazzo Simoni
Venerdì8:15 - 11:00T/10 Palazzo Simoni

Lezioni: dal 01/10/2018 al 21/12/2018

Oggetto:
Ultimo aggiornamento: 30/04/2019 12:34
Location: https://www.suiss.unito.it/robots.html
Non cliccare qui!